动作电位
1、较小的轴突在较大的轴突之前就会受到局部麻醉药的影响,因为它们的动作电位的安全裕度(safetymargin)较小。更多的电压门控钠通道才能确保动作电位在传导到轴突时不会消失。小轴突对局麻药敏感性的增加在临床实践中是偶然的。正如我们将在第12章中发现的,正是较小的纤维传递了关于疼痛刺激(如牙痛)的信息。
2、 K+通道是迄今所知分布最为广泛的、最大的电压门控离子通道家族。脊椎动物至少有17个不同基因编码的、具有S1~S6不同形态的K+通道。从K+通道通过的离子一般有非常高的选择性,通透能力有较大差别,其中,K+>Rb+>NH4+>>Cs+>Li+,Na+,Ca2+。在正常生理情况下,Pk/PNa(K+和Na+通透率的比值)的通透比率大于而且Na+能阻断K+通道。在完全缺K+的情况下,一些K+通道可允许Na+通过,这种特性与Ca2+通道类似。Ca2+通道在完全缺Ca2+时,也能充许Na+电流和K+电流通过。(动作电位)。
3、髓鞘不是连续覆盖在轴突上的,中间会有断裂——郎飞结。电压门控钠离子通道聚集在郎飞结上,因此郎飞结能产生动作电位。郎飞结之间距离在0.5mm-2mm之间,越肥大的轴突有越远的郎飞结。
4、动作电位也可称为神经冲动或者兴奋,其产生、传导与传递都牵涉到分子生物学、动物生理学等方面的机理,是高中生物学教学中的一大难点,同时也是近几年高考的热点。本文试就几个与动作电位有关的疑难问题进行辨析,以供师生参考。
5、动作电位定义:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。
6、动作电位的幅度约为90~130mV,动作电位超过零电位水平约35mV,这一段称为超射。神经纤维的动作电位一般历时约0.5~0ms,可沿膜传播,又称神经冲动,即兴奋和神经冲动是动作电位意义相同。
7、在膜片钳发明之前,离子通道的存在都只是假设的理论而已。其发明,能让人测量通过单通道的离子电流。
8、传导速度可能会不同,但一般在10m/s。动作电位一般持续2ms,也就是单个动作电位能传播2cm长度的轴突。
9、(关于高考)高考卷子是谁.谁.谁出的?是他们……
10、当细胞受到刺激,首先引起少量Na+通道开放,使膜静息电位减少;当膜静息电位减少,达到某一电位水平(阈电位)时才引起电压依从式Na+通道大量开放,从而产生动作电位。
11、从神经元两端向中间传导的两个动作电位相遇后为什么会抵消(动作电位)。
12、静息电位的形成是非门控K+通道开放(事实上该通道一直开放),细胞膜对K+的通透性远大于Na+通透性而导致的(约50倍至100倍)。因为细胞膜内外的离子分布状况为:膜内有较多的K+和有机阴离子,膜外有较多的Na+和Cl-。所以静息时的离子移动主要表现为膜内K+顺浓度差往外扩散,相应的阴离子不能通过细胞膜,在膜两侧形成电位差。该电位差阻止了K+进一步的外流,进而达到浓度差与电位差对离子移动作用力相等的平衡状态。此时形成的外正内负的电位分布即静息电位,接近于K+的平衡电位,但一定程度上受Na+内流的影响而略为偏低。
13、 动作电位有两个显著特征:首先,它们是全或无的。在阈值处,电压门控钠离子通道完全打开。因此,每一次的去极化,要么形成一个完整的动作电位,要么就不形成动作电位。其次,动作电位总是孤立事件。它们并不能像分级电位那样两两相加或相互影响。因为细胞膜在产生了一个动作电位后,有一个短暂的不应期。在这段时间内,电压门控钠离子通道无法再次打开。
14、 有些参考资料认为Na+—K+泵的活动是导致复极化的原因。这种观点其实是错误的。复极化是电压门控K+通道激活使K+顺浓度差快速外流的结果。Na+—K+泵的作用是主动转运Na+和K+,即把Na+运出细胞同时把K+运进细胞,其速度比K+外流慢得多,每次转运的Na+和K+又接近相等,一般不伴随电位明显变化,不可能是复极化的主要原因。只在膜内Na+浓度过大时,泵出的Na+才会多于K+,最多可达到3:从而使膜电位在复极化以后向超极化方向变化,即膜内电位朝负值增加的方向变化。Na+—K+泵对于维持膜两侧的离子浓度差非常重要,因为每兴奋一次,必然有少量K+外流和Na+内流,使得膜内外两种离子的浓度差减少。如果没有Na+—K+泵的主动转运,离子浓度差势必持续减少,直至不能产生兴奋。因此,每产生一次动作电位后的静息期,Na+—K+泵就会启动,从而始终维持一定的离子浓度差。这也就是兴奋需要消耗能量的原因,动作电位的产生虽不直接消耗ATP,但消耗了离子势能,而离子势能的储备需要消耗ATP。
15、(动作电位主要包括峰电位和后电位两部分。锋电位由快速去极化的升支和快速复极化的降支组成,是动作电位的主要部分;后电位是锋电位之后膜电位的低幅、缓慢波动,包括后去极化电位和后超级化电位。)
16、局部电位具有以下特征:① 不是“全或无”的;②电紧张扩布;③ 没有不应期,可以叠加:包括时间总和及空间总和。
17、钾离子通道和钠离子通道相似,都是有4个肽链子单位环绕形成的孔,其蛋白质对电场敏感,可以在去极化后扭曲成能让K+通过的形状。
18、(教材拓展)“人体体温调节”中几个疑惑点解答
19、 ②Na+失活态门缓慢关闭,在经历一个短暂的时间延迟后,阻止Na+的进一步内流,使电位值不能继续上升;
20、下冲或超极化后(undershootorafter-hyperpolarization):静息电位以下
21、答:如神经元不同的电气行为中所讨论,神经元会产生适应性动作电位,即先快后慢。
22、在大脑或脊柱中的一般神经元,由其他神经元从突触输入的信号会使树突或细胞体去极化,如果轴丘上细胞膜电位超过阈值则会产生动作电位。
23、如果一开始没有通道打开,Vm=0。此时打开钾离子通道,那么钾离子会流出去,直到Vm=-80mV。这过程中有三点需要考虑:
24、 动作电位是短暂、快速的膜电位的变化(100mV),在此期间,细胞膜内、外的极性发生反转,即细胞膜由静息状态时的膜内为负、膜外为正,转变为膜内为正而膜外为负的状态。一个单个动作电位仅包括全部兴奋细胞膜的一小部分。与分级动作电位不同的是,动作电位从动作电位的起点沿整个细胞膜传导,传导的强度不随距离的变化而衰减。本文介绍动作电位发生期间,细胞膜电位和离子通透性变化的一系列事件是如何发生的。
25、膜上电流与电导。钠钾离子泵没画出。(a)初始所有通道关闭,Vm=0。(b)K+通道打开,因为电导gk>0,K+净流出,形成电流Ik,直到膜电位=平衡电位。(c)Vm=平衡电位,即使电导>0,但是没有电场力,K+没有净流出。此时K+流入流出一样。
26、动作电位(action potential)是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
27、 离体神经纤维在两端同时受到刺激,产生两个神经冲动传导至中点并相遇后会抵消或停止传导,这与电压门控Na+通道特性有关。前文提到动作电位产生过程中电压门控Na+通道先是处于激活状态,激活后又迅速失活,这段时间内不可能再次产生动作电位,称为绝对不应期。只有在复极化后期电压门控Na+通道恢复到备用状态后,才有可能再次接受刺激产生兴奋。当兴奋部位通过局部电流刺激相邻未兴奋部位产生动作电位时,原兴奋部位正处于绝对不应期内,不能再对局部电流的刺激产生反应。待到原兴奋部位恢复正常后,则动作电位已经传导到足够远的区段,不能再通过局部电流刺激原兴奋部位了。从神经元两端向中间传导的两个动作电位,在传导到相遇点时,旁边的相邻部位恰恰都是刚刚兴奋过而正处于不应期的部位,因此传导就会停止。对于有髓纤维来说,这个问题还可以有另一种情况,那就是神经纤维两端兴奋点之间刚好有偶数个郎飞结,当兴奋同时传导至中间两个郎飞结时,这两点都处于反极化状态,电位差为0,不能产生局部电流,所以抵消了。
28、细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内。
29、动作电位:可兴奋组织或细胞受到阈刺激或阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。
30、当你补牙、拔智齿等等去找牙医的时候,医生会给你牙龈来上一针麻醉剂,于是你能感觉被打麻醉剂的半边嘴都感觉不到了,但是身体其他部位没有受到影响,这就是局部麻醉。
31、⑤超极化电位:激活态和失活态的电压门控Na+通道都关闭,电压门控K+通道也逐渐开始关闭,但速度缓慢,会有稍微过量的K+外流使膜电位较静息状态时更负,形成一个超极化电位,即正后电位。细胞膜很快会恢复到静息状态,细胞膜时刻准备响应另一个新刺激。
32、 ③关闭态,无开放的能力(激活态门开放,失活态门关闭)。
33、细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。
34、细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。
35、神经细胞很小,得用大一些的神经元,比如诸如章鱼的无脊椎动物神经元,就比脊椎动物的神经元大上百倍。
36、树突与轴突不仅形态上不同,分子特性也不同。膜上离子通道的种类,数量不同,解释了不同类型神经元的电学特性。
37、下列关于在单根神经纤维上动作电位的叙述,错误的是()
38、 突触前膜释放兴奋性神经递质,与后膜上受体结合而导致膜电位去极化,称为兴奋性突触后电位。该电位与动作电位并不相同。动作电位的产生与电压门控通道有关,其特点是“全或无”,即电压门控通道要么不能被激活而导致动作电位不能产生,要么能被激活而几乎全部开放,表现出相同大小的动作电位。动作电位可以在神经纤维上传导,不随传导距离增加而减弱,同一神经元上两个动作电位相遇以后会抵消或停止传导。而突触后膜上则没有电压门控通道,兴奋性突触后电位是由于化学门控Na+(或Ca+)通道开放使Na+(或Ca+)内流而形成。化学门控通道的开放数量与其所结合的递质成正相关,因此不表现出“全或无”的特点。这种电位不能传导,只能在局部扩布并逐渐减弱直至消失。多个兴奋性突触后电位相遇可以叠加,而不是抵消。当兴奋性突触后电位累加达到一定强度,通过局部电流形式刺激轴突的始段产生动作电位才可以沿神经纤维进行远距离传导。神经与骨骼肌相联系的部位称为神经—骨骼肌接头,与突触结构相似。兴奋经递质传递至接头后膜(终板膜)以后在接头后膜产生的终板电位与兴奋性后电位特点相同。
39、①具有“全或无”现象;②脉冲式传导;③时间短暂;④有不应期。
40、 突触前膜释放抑制性递质,导致突触后膜产生抑制性后电位,从而使后膜兴奋性下降,这种情况就叫突触后抑制。抑制性后电位的产生是由于抑制性递质传递至后膜后,使后膜Cl-通道开放,引起Cl-内流而使后膜超极化所导致,即膜内电位负值增大。或者也可以是K+通道开放,K+外流增加;以及Na+(或Ca+)通道关闭,使Na+(或Ca+)不能内流。由于电压门控Na+通道需要去极化到一定程度才能激活,所以超极化意味着兴奋性下降。突触后抑制一般发生在轴突—树突、轴突—胞体等突触之间。突触前抑制则通常发生于轴突—轴突之间,其结构如图2所示,A轴突与B轴突构成突触,B轴突又与C神经元构成突触。B可将兴奋传递至C,A可以抑制这种传递。其原理是A神经元兴奋后经轴突释放兴奋性递质,作用于B神经元的轴突,使B神经元的轴突局部去极化但又不至于产生动作电位,此时若B神经元兴奋,由已经局部去极化的轴突传递到C神经元,则C神经元上产生的兴奋性后电位将变小。原因是B神经元轴突在产生动作电位前已经局部去极化,所以产生动作电位时膜电位变化幅度减小,而动作电位的变化幅度与递质释放量成正比,从而使B轴突释放的递质减少,C神经元的兴奋性后电位降低。
41、 根据K+通道的高度特异选择性及平衡电位接近-90mV的特点,K+通道的最基本的作用,应是使兴奋的细胞受到抑制。K+通道对抗Na+和Ca2+通道的兴奋性活动,起着稳定静息电位的作用,使细胞保持非兴奋状态。尽管一些K+通道对静息电位起着决定性的作用,然而K+通道在可兴奋细胞中的电压依赖性和动力学特性,使它们还具有其他一些特殊的功能,例如调节复极化过程、修饰动作电位时程、控制冲动的发放频率、决定节律性脉冲发放的特性等。K+通道的这些特点使其在调节所有类型肌肉收缩的强度和频率中,在神经终末终止神经递质的释放中,以及在弱化突触连接强度的事件中,均发挥极为广泛和重要的作用。
42、"全或无"现象,单一神经或肌细胞动作电位的一个重要特点就是刺激若达不到阈值,将不会产生动作电位。刺激一旦达到阈值,就会暴发动作电位。
43、动作电位的形成完全是由于离子的被动扩散。然而, 在每个动作电位结束时,细胞质内的钠离子含量比静息时略高,钾离子含量比静息时略低。
44、介绍动作电位的特点动作电位的上下跳动额外内容:记录动作电位的方法单个动作电位的产生多个动作电位的产生光遗传学——用光控制神经活动名家访谈:光敏感通道蛋白的发现之路,byGeorgeNagel理论上的动作电位膜上电流、电导动作电位的输入与输出实际的动作电位电压门控钠离子通道钠离子通道的结构钠离子通道的功能特性额外内容:膜片钳方法毒素对钠离子通道的影响电压门钾离子通道二者组合动作电位的传导影响传导速度的因素额外内容:局部麻醉磷脂与跳跃传导额外内容:多发性硬化症,一种脱髓鞘疾病动作电位,树突,轴突额外内容:神经元不同的电气行为总结课后习题感想
45、 ②开放或激活状态(2个门都处于开放状态);
46、运气好,膜上就只有一个通道。当电压从-65mV上升到阈值Vm后,能检测到电流流入(e)。通道保持开放的时间可能不同,但电导值保持不变。
47、 这是由于此时钠通道部分或完全恢复到关闭状态,可以接受刺激再次开放。但因钾通道仍处在开放状态,钾外流可对抗钠内流引起的去极化,所以要求刺激强度必须比阈刺激更强才能使膜电位去极化达到阈电位水平,从而诱发动作电位。
48、细胞膜的渗透性和离子移动的显著变化导致动作电位的发生
49、 ①Na+激活态门的迅速开放,使Na+进入到细胞内,使膜从阈电位水平迅速升至动作电位的峰值;
50、神经纤维上电压门控Na+通道感受到了细胞膜拉伸,Na+通道被打开
51、电极放到细胞外,能测量动作电位产生时,离子流入流出细胞膜产生的电流。此时电极可以用盐溶液玻璃管,也能用纯金属电极。同上操作就能看到,首先下降的波表明有正离子流入细胞,上升波表明有正离子流出细胞,值得注意的是两种波幅度不同。如果把这样电压的变化连到扬声器中,能听到像爆米花一样的噗噗声。
52、细胞膜在不同状态下对不同离子的通透性不同。
53、从神经元两端向中间传导的两个动作电位相遇后为什么会抵消
54、 神经元上产生动作电位的兴奋位点与周围未兴奋区段所形成的电位差非常小,不足以在整个神经纤维上形成如同金属导线连通电源一样的电流,而只能与一小段相邻未兴奋部位形成局部电流。该局部电流刺激相邻部位也产生一个动作电位,紧接着相邻部位又与下一个部位产生局部电流。依次循环下去,也就相当于动作电位逐点地传导开来。因为不只是离子在溶液中受电场力驱动沿单一方向移动,还牵涉到离子通道的开闭以及离子的跨膜运动,自然比普通的电流要慢得多。当然,只有无髓神经纤维才是这种“逐点式”传导,而有髓鞘的神经纤维则是“跳跃式”的传导,这是因为附着在神经纤维外的髓鞘是不导电以及不允许离子通过的,只有在无髓鞘的部位即郎飞结处能与细胞外液接触,也只有这些部位才能产生动作电位。相当于兴奋只能在郎飞结之间“跳跃式”传导,传导速度大大超过“逐点式”传导,不过依然比电流速度要慢很多。
55、通道损坏,会导致一些疾病,称为(channelopathy)。有一种遗传病,伴有发热性惊厥的全身性癫痫(generalizedepilepsywithfebrileseizures)。其癫痫发作是由大脑中爆炸性的、高度同步的电活动引起的。一般是3个月到5岁的婴儿,发烧后产生癫痫。表现为细胞膜外钠离子通道蛋白单氨基酸突变,突变的影响包括减缓钠通道的失活,延长动作电位持续时间
56、向神经元注入正电荷的效果。(a)轴突小丘被两个电极刺穿,一个用来记录相对于地面的膜电位,另一个用来用电流刺激神经元。(b)当电流注入神经元时(上图),膜充分去极化以触发动作电位(下图)。
57、阈值:能使细胞产生动作电位的最小刺激强度称为:阈强度(阈值)。
58、Na+外面多,扩散作用沿通道进入细胞内,导致去极化,膜内电压上升
59、动作电位:Na+大量内流;局部电位:Na+少量内流。
60、还有一种病,格林·巴利综合征(Guillain–Barrésyndrome,GBS),会攻击支配肌肉和皮肤的周围神经的髓磷脂。这种疾病可能发生在轻微的传染病和接种后,似乎是由于对自身髓磷脂的异常免疫反应引起的。这些症状直接源于支配肌肉的轴突动作电位传导减慢或失败。这种传导缺陷可以通过通过皮肤的电刺激周围神经,并测量引起反应(例如肌肉抽动)所需的时间来证明。
61、细胞受到刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,叫做动作电位。
62、 在膜的静息状态,所有的Na+通道和K+通道均处于关闭状态,此时,Na+通道的激活态门是关闭的,而失活态门是开放的。这表明,此时门控Na+通道虽关闭但却处于有能力开放的状态。在静息状态时没有Na+或K+通过电压门控通道流动,然而,由于存在许多漏K+通道和极少量的漏Na+通道,静息状态时K+通过膜渗透能力较Na+大50~75倍,仍然存在Na+和K+的透膜渗漏。
63、外部溶液中Na+、K+浓度对膜电位及兴奋性的影响
64、具体来说,当某个部位受到刺激,Na+通道打开,Na+流入细胞后,Na+会向细胞周围扩散,使得细胞内附近电压升高,当超过阈值后,Na+通道打开,重复扩散过程,直到轴突末梢后,使用突触传导继续传导信号。
65、理论上来说,Na+流入细胞,导致动作电位,K+流出细胞恢复静息电位。
66、科学家发现,动作电位的下降相,仅仅通过对Na+电导的下降是不够的,还有短暂的对K+电导的提高,来加速K+出去细胞进而降低膜内电压。于是他们假设除了钠离子通道,还有一种钾离子通道,在去极化1ms后打开。由于其延迟,以及恢复静息的功能,科学家称其为,延迟整流器(delayedrectifier)。
67、动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位由峰电位(迅速去极化上升支和迅速复极化下降支的总称)和后电位(缓慢的电位变化,包括负后电位和正后电位)组成。
68、脉冲式发放:两个动作电位总是有间隔而不会融合起来。
69、对夹下来的含有离子通道的细胞膜加上电压,可以发现,从-80mV到-65mV时,通道保持关闭;-65mV到-40mV时,通道突然打开,并有以下三个特点:
70、不衰减传播:即动作电位的幅度和波形在传播过程中始终不变,也是全或无现象在传播时的一个体现。
71、想象使用一个带连拍功能的摄像机,你持续按下快门后,将会拍下一系列的照片。神经元也是一样,你持续给一个大于阈值的刺激电流,它便会持续产生动作电位。有意思的是,你给的刺激越大,动作电位频率越快。
72、人们假设,当内部去极化,也就是电压上升超过阈值后,Na+电导升高,Na+迅速流入,快速产生动作电位;当需要静息时,K+电导升高,K+迅速流出,快速恢复静息电位。
73、电流低于阈值,则无动作电位;电流高于阈值,则持续产生动作电位;更大的电流,产生更高频率的动作电位
74、为了验证这个观点,人们必须测量动作电位上升下降阶段膜上电导,由于动作电位变得很快,不好测。后来有人发明了电位钳(voltageclamp),它能够将膜电位固定在某个选定的值。
75、动作电位的产生则与电压门控通道的开放有关。适宜的刺激可使部分电压门控Na+通道开放,Na+内流而导致去极化。刺激达到一定强度以上,去极化至阈电位,则可继发性地引起更多Na+通道开放,使去极化更迅速。通过这种“正反馈”机制使Na+通道开放程度在极短时间内达到最大值,称为Na+通道的激活。此时Na+通透性快速增加超过K+通透性,导致进一步的去极化以及反极化,直至膜电位接近于Na+平衡电位为止,构成动作电位的上升支。电压门控Na+通道激活后又迅速失活(不能被激活的状态),电压门控K+通道激活。K+通透性再次超过Na+通透性,K+外流而导致复极化,形成动作电位的下降支。恢复到静息电位后电压门控K+通道关闭,而电压门控Na+通道则恢复到备用状态(通道关闭但可被激活的状态),以迎接下一次兴奋。电压门控K+通道同样是由于去极化而激活,不过其开放速度较慢,并且没有失活状态。阈下刺激只能使Na+通道少量开放,Na+少量内流,且不能再生性地使更多Na+通道开放,所以只能产生局部兴奋,不能形成动作电位。
76、如钾离子一般,钠离子通道也有孔环,这使得它对Na+的通透性是K+的12倍。内部电压去极化超过阈值后,钠离子通道会扭曲,使得Na+与一个水分子的配合物能够通过。很显然通过通道是需要将离子周围的水去除只剩一个的。
77、动作电位产生后,在不同神经元之间是如何产生的呢?神经元如何处理整合来自不同神经元细胞的信息呢?这就是下两章要讲的。
78、绝对不应期(Absoluterefractoryperiod)。当Na+通道打开后,必须保持1ms才能关闭。
79、膜内电压超过阈值(threshold),产生动作电位
80、把轴突想象成一根鞭炮的引线,你可以在引线任意位置点燃,引线会向两边传播。不同的是,引线只能点一次,而轴突能恢复原状,并点很多次。
81、动作电位具有“全或无”的特性,因此动作电位不可能产生任何意义上的叠加或总和;
82、以第三章你踩到图钉为例,会发生以下几件事情:
83、动作电位的产生机制是动作电位上升支形成,是当细胞受到阈刺激时,先引起少量Na+通道开放,Na+内流使膜去极化达阈电位,此时大量Na+通道开放,经Na+迅速内流的再生性循环,引起膜快速去极化,使膜内电位迅速升高。
84、当Na+内流的动力(浓度差和静息电位差)与阻力(由Na+内流形成膜内为正,膜外为负的电位差)达到平衡时,Na+内流停止,此时存在于膜内外的电位差即是Na+的平衡电位。
85、静息电位接近于K+的平衡电位,主要受膜内外的K+浓度差影响。动作电位接近于Na+平衡电位,主要受膜内外的Na+浓度差影响。将离体神经置于较低Na+浓度的溶液中,该神经所能产生的动作电位幅度降低,静息电位幅度变化不大,兴奋性降低。兴奋性降低的原因是细胞内外Na+浓度差减小,Na+内流速度降低,再生性地激活Na+通道难度增大。反之,适当降低细胞外液中K+浓度,则使静息电位绝对值升高,而对动作电位影响不大,兴奋性降低。原因是膜内外K+浓度差增大,K+外流增多使静息电位绝对值升高,去极化到阈电位的难度升高。
86、下降(fallingphase):0以下到静息电位
87、动作电位的产生则与电压门控通道的开放有关。适宜的刺激可使部分电压门控Na+通道开放,Na+内流而导致去极化。刺激达到一定强度以上,去极化至阈电位,则可继发性地引起更多Na+通道开放,使去极化更迅速。通过这种“正反馈”机制使Na+通道开放程度在极短时间内达到最大值,称为Na+通道的激活。此时Na+通透性快速增加超过K+通透性,导致进一步的去极化以及反极化,直至膜电位接近于Na+平衡电位为止,构成动作电位的上升支。电压门控Na+通道激活后又迅速失活(不能被激活的状态),电压门控K+通道激活。K+通透性再次超过Na+通透性,K+外流而导致复极化,形成动作电位的下降支。恢复到静息电位后电压门控K+通道关闭,而电压门控Na+通道则恢复到备用状态(通道关闭但可被激活的状态),以迎接下一次兴奋。电压门控K+通道同样是由于去极化而激活,不过其开放速度较慢,并且没有失活状态。阈下刺激只能使Na+通道少量开放,Na+少量内流,且不能再生性地使更多Na+通道开放,所以只能产生局部兴奋,不能形成动作电位。
88、②不是“全或无”式的,局部电位随着刺激强度的增加而增加;
89、 当细胞接受刺激信号(电信号或化学信号)超过一定阈值时,电位门Na+通道将介导细胞产生动作电位。细胞接受阖值刺激,Na+通道打开,引起Na+通透性大大增加,瞬间大量Na+流入细胞内,致使静息电位减小乃至消失,此即质膜的去极化(depolarization)过程。当细胞内Na+进一步增加达到Na+平衡电位,形成瞬间的内正外负的动作电位,称质膜的反极化,动作电位随即达到最大值。只有达到一定的刺激阖,动作电位才会出现,这是一种全或无的正反馈阖值,在Na+大量进入细胞时,通透性也逐渐增加,随着动作电位出现,Na+通道从失活到关闭,电位门K+通道完全打开,K+流出细胞从而使质膜再度极化,以至于超过原来的静息电位,此时称超极化(superpolarization)。超极化时膜电位使K+通道关闭,膜电位又恢复至静息状态(图5-12)。
90、 去极化达到阈电位时,膜对Na+的通透性突然显著增大,超过了K+通透性的600倍。此时,不管是处于开放还是处于关闭状态的通道都不再能开放。在去极化早期时相时,随着越来越多的Na+通道的开放,膜电位开始减小,当达到阈电位时,Na+通道开放的数量已经足以启动一个动作电位产生的正反馈进程,使余下的大量的Na+通道也相继开放。与K+的通透性相比,此时细胞膜对Na+的通透性占据了绝对的优势,大量的Na+进入细胞内,膜内电位迅速由负变正,并接近Na+的平衡电位(约+60mV)。此时电位已达到+30mV,但并未真正达到Na+的平衡电位水平,这是由于此时Na+通道开始关闭进入失活态,Na+的通透性下降到静息状态水平。
91、膜片钳其实就是一个玻璃管子,顶端用火抛光过,直径在1-5um。拿到细胞膜上(a),一吸(b),膜就将孔密封住。再扯管子(c),就把这小块膜撕下来。在管子上施加电压,由于玻璃管电导很低,离子只能选择通过膜上的通道,就可以测量单通道膜上稳定的电流(d)测量的电流幅值,处于一个稳定的膜电位上,反映了膜电导;电流持续时间反映了通道开启的时间。
92、 是什么事件引起Na+通道进入关闭状态的?当膜达到阈电位值的时候,每个Na+通道门控变化与存在的2个紧密相关的事件有关,首先激活态门迅速开放引起膜的去极化,使通道转换成开放的构型(图4)。
93、在细胞膜上任意一点产生动作电位,与周边的未兴奋区形成电位差,在局部电流的刺激下周边未兴奋区的Na通道开放,整个细胞膜都会经历1次完全相同的动作电位,其形状与幅度均不发生变化。(拓展资料)